The specific binding sites of eyestalk- and pericardial organ-crustacean hyperglycaemic hormones (CHHs) in multiple tissues of the blue crab, Callinectes sapidus.
نویسندگان
چکیده
Crustacean hyperglycaemic hormone from the pericardial organ (PO-CHH) is a CHH-related neuropeptide but its function and target tissues are not known in crustaceans. To investigate this issue, we employed radiolabelled ligand binding and cGMP assays, using eyestalk-CHH (ES-CHH) as a reference neuropeptide. The membranes were prepared from various tissues of Callinectes sapidus: hepatopancreas, hindgut, midgut, gills, heart, abdominal muscles and scaphognathites. Like ES-CHH, recombinant PO-CHH (rPO-CHH) specifically bound to the membranes of scaphognathites=abdominal muscles>midgut>gills> heart>hindgut and hepatopancreas (list order corresponds to the number of binding sites). The specific binding sites of (125)I-ES-CHH in hepatopancreas and gills were saturable and displaceable. The abdominal muscle membrane binding sites were specific and saturable to both CHHs. These binding sites were displaced by homologous neuropeptides, but poorly displaced by the heterologous counterpart. As for the second messenger, the expected increment (3- to >20-fold) in the amount of cGMP produced by ES-CHH was noted in most tissues tested except midgut. Recombinant PO-CHH increased cGMP production 1.5- to 4-fold in scaphognathites, heart, midgut, hindgut and abdominal muscles. The results obtained from the binding study suggest that PO-CHH also has multiple target tissues of which abdominal muscles and scaphognathites are the primary ones. The differences in the primary amino acid sequences of PO-CHH and ES-CHH, particularly in the C-terminal region and in the amidation at C-terminus, may contribute to the truncated responses of hyperglycaemia, cGMP stimulation and binding affinity.
منابع مشابه
Ecdysteroids Regulate the Levels of Molt-Inhibiting Hormone (MIH) Expression in the Blue Crab, Callinectes sapidus
Arthropod molt is coordinated through the interplay between ecdysteroids and neuropeptide hormones. In crustaceans, changes in the activity of Y-organs during the molt cycle have been regulated by molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH). Little has been known of the mode of direct effects of ecdysteroids on the levels of MIH and CHH in the eyestalk ganglia durin...
متن کاملRoles of crustacean hyperglycaemic hormone in ionic and metabolic homeostasis in the Christmas Island blue crab, Discoplax celeste.
There is a growing body of evidence implicating the involvement of crustacean hyperglycaemic hormone (CHH) in ionic homeostasis in decapod crustaceans. However, little is known regarding hormonally influenced osmoregulatory processes in terrestrial decapods. As many terrestrial decapods experience opposing seasonal demands upon ionoregulatory physiologies, we reasoned that these would make inte...
متن کاملRegulation of the crab heartbeat by crustacean cardioactive peptide (CCAP): central and peripheral actions.
In regulating neurophysiological systems, neuromodulators exert multiple actions at multiple sites in such a way as to control the activity in an integrated manner. We are studying how this happens in a simple central pattern generator (CPG)-effector system, the heart of the blue crab Callinectes sapidus. The rhythmic contractions of this heart are neurogenic, driven by rhythmic motor patterns ...
متن کاملA novel hormone is required for the development of reproductive phenotypes in adult female crabs.
The crustacean male-specific androgenic hormone is widely accepted as a key factor in sexual differentiation and in the development of secondary sex characteristics. However, the mechanism by which the plethora of different reproductive strategies are controlled and executed in crustaceans is not known. We discovered in the blue crab, Callinectes sapidus, a hitherto unknown neurohormone, named ...
متن کاملIdentification and developmental expression of mRNAs encoding crustacean cardioactive peptide (CCAP) in decapod crustaceans.
Full-length cDNAs encoding crustacean cardioactive peptide (CCAP) were isolated from several decapod (brachyuran and astacuran) crustaceans: the blue crab Callinectes sapidus, green shore crab Carcinus maenas, European lobster Homarus gamarus and calico crayfish Orconectes immunis. The cDNAs encode open reading frames of 143 (brachyurans) and 139-140 (astacurans) amino acids. Apart from the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 212 Pt 4 شماره
صفحات -
تاریخ انتشار 2009